The Chain Rule for HILL Pseudoentropy, Revisited
نویسندگان
چکیده
Computational notions of entropy (a.k.a. pseudoentropy) have found many applications, including leakage-resilient cryptography, deterministic encryption or memory delegation. The most important tools to argue about pseudoentropy are chain rules, which quantify by how much (in terms of quantity and quality) the pseudoentropy of a given random variable X decreases when conditioned on some other variable Z (think for example of X as a secret key and Z as information leaked by a sidechannel). In this paper we give a very simple and modular proof of the chain rule for HILL pseudoentropy, improving best known parameters. Our version allows for increasing the acceptable length of leakage in applications up to a constant factor compared to the best previous bounds. As a contribution of independent interest, we provide a comprehensive study of all known versions of the chain rule, comparing their worst-case strength and limitations.
منابع مشابه
On the Complexity of Breaking Pseudoentropy
Pseudoentropy has found a lot of important applications to cryptography and complexity theory. In this paper we focus on the foundational problem that has not been investigated so far, namely by how much pseudoentropy (the amount seen by computationally bounded attackers) differs from its information-theoretic counterpart (seen by unbounded observers), given certain limits on attacker’s computa...
متن کاملPseudoentropy: Lower-Bounds for Chain Rules and Transformations
Computational notions of entropy have recently found many applications, including leakageresilient cryptography, deterministic encryption or memory delegation. The two main types of results which make computational notions so useful are (1) Chain rules, which quantify by how much the computational entropy of a variable decreases if conditioned on some other variable (2) Transformations, which q...
متن کاملComputational Notions of Quantum Min-Entropy
We initiate the study of computational entropy in the quantum setting. We investigate to what extent the classical notions of computational entropy generalize to the quantum setting, and whether quantum analogues of classical theorems hold. Our main results are as follows. (1) The classical Leakage Chain Rule for pseudoentropy can be extended to the case that the leakage information is quantum ...
متن کاملMetric Pseudoentropy: Characterizations and Applications
Metric entropy is a computational variant of entropy, often used as a convenient substitute of HILL Entropy, slightly stronger and standard notion for entropy in cryptographic applications. In this paper we develop a general method to characterize metric-type computational variants of entropy, in a way depending only on properties of a chosen class of test functions (adversaries). As a conseque...
متن کاملIndistinguishability and Unpredictability Hardcore Lemmas: New Proofs with Applications to Pseudoentropy
Hardcore lemmas are results in complexity theory which state that average-case hardness must have a very hard “kernel”, that is a subset of instances where the problem is extremely hard. Such results find important applications in hardness amplification. In this paper we revisit two classical results: (a) The hardcore lemma for unpredictability, proved first by Impagliazzo. It states that if a ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015